Сырые сокеты
Помимо потоковых и дейтаграммных сокетов существуют, так называемые сырые (RAW) сокеты. Они предоставляют возможность «ручного» формирования TCP/IP-пакетов, равно как и полного доступа к содержимому заголовков полученных TCP/IP-пакетов, что необходимо многим сетевым сканерам, FireWall’ам, брандмауэрам и, разумеется, хакерским программам, например, устанавливающим в поле «адрес отправителя» адрес самого получателя. Спецификация Winsock 1.x категорически не поддерживала сырые сокеты. В Winsock 2.x положение как будто было исправлено: по крайней мере, формально такая поддержка появилась и в SDK даже входил пример, демонстрирующий использование сырых сокетов для реализации утилиты ping. Однако, попытки использования сырых сокетов для всех остальных целей проваливались — система игнорировала сформированный «вручную» IP- (или TCP-) пакет и создавала его самостоятельно.
Документация объясняла, что для самостоятельной обработки заголовков пакетов, опция IP_HDRINCL должна быть установлена. Проблема в том, что вызов setsockopt(my_sock,IPPROTO_IP, IP_HDRINCL, &oki, sizeof(oki)) возвращал ошибку!
Таким образом, на прикладном уровне получить непосредственный доступ к заголовкам TCP/IP невозможно. Это препятствует переносу многих приложений из UNIX в Windows, более того — определенным образом ущемляет возможности самой Windows, не позволяя ей решать целый ряд задач, требующих поддержки сырых сокетов.
Разработка и тестирование учебных примеров
В процессе выполнения лабораторной работы предполагается разработка на основе выданных преподавателем заготовок четырех программ, реализующих простые UDP и TCP эхо-серверы и UDP- и TCP- клиенты. (Эхо-сервер просто возвращает клиенту полученные от него же данные).
Проверка работоспособности UDP-сервера и клиента: запустите UDP-сервер и одну или несколько копий клиента — в каждой из них можно набирать на клавиатуре некоторые данные и получать их обратно от сервера.
Внимание: работая с серверными приложениями, вы (если не предпримете дополнительных мер) предоставляете возможность воспользоваться ими каждому абоненту Интернет (если в момент работы сервера вы подключены к Интернет). Проблема в том, что ошибки реализации, в особенности переполняющиеся буфера, могут позволить удаленному злоумышленнику выполнить на вашей машине любой код, со всеми вытекающими отсюда последствиями.
Будьте очень внимательны, а еще лучше не входите в Интернет, пока не будете полностью уверены, что сервера отлажены и не содержат ошибок!
Программирование IPX/SPX сокетов
Когда говорят о сокетном программировании, чаще всего подразумевается стек TCP/IP. Однако, как указывалось выше, и с другими протокольными стеками работа может вестись с использованием WinSocket. Рассмотрим пример протоколов IPX/SPX. Многие программные модули и системы используют их до сих пор
( Подробнее ознакомиться и прочитать об этих протоколах можно здесь: http://www.sources.ru/protocols/bsp08/index.html).
Конкретные примеры работы с сокетами приведены ниже:
WORD SPX_SOCKET = 0x5647 char localNetNum[IPX_NET_SIZE]; char localNodeNum[IPX_NODE_SIZE]; // открытие сокета SOCKET spx_skt = socket (PF_IPX, SOCK_STREAM, NSPROTO_SPX)); // проверим если открылся if (spx ==INVALID_SOCKET) MessageBox (NULL, “Ошибка открытия сокета.”, «Error», MB_OK); // структура для адреса нашего сокета sockaddr_ipx addr_ipx; /* так выглядит структура sockaddr_ipx в WSIPX.H typedef struct sockaddr_ipx < u_short sa_family; u_char sa_netnum[4];
u_char sa_nodenum[6]; unsigned short sa_socket;
> SOCKADDR_IPX, *PSOCKADDR_IPX, FAR *LPSOCKADDR_IPX */
int sz = sizeof (addr_ipx); // обнулим её memset (&addr_ipx, 0, sz); addr_ipx.sa_family = AF_IPX; // тип протокола addr_ipx.sa_socket = htons(SPX_SOCKET); // номер сокета // привязываем его к номеру сокета bind(spx_skt, (sockaddr*) &addr_ipx, sz); // узнаем наш адрес getsockname (spx_skt, (sockaddr*) &addr_ipx, &sz); // наш номер сети memcpy (localNetNum, addr_ipx.sa_netnum, IPX_NET_SIZE); // наш номер узла memcpy (localNodeNum, addr_ipx.sa_nodenum, IPX_NODE_SIZE);
В остальном, работа с SPX идентична работе TCP сокетов. Все написанное выше справедливо и для IPX сокетов, за исключением того, что последние не могут быть использованы для операции connect. Открываются они следующим образом:
SOCKET ipx_skt = socket (PF_IPX, SOCK_DGRAM, NSPROTO_IPX); Передача данных происходит следующим образом: // структура для хранения удалённого адреса sockaddr_ipx addr_ipx;
// обнуляем её, хотя это не всегда нужно, но и никогда не мешает memset (&addr_ipx, 0, sizeof (addr_ipx)); // тип протокола addr_ipx.sa_family = AF_IPX; // номер сокета addr_ipx.sa_socket = htons(SOCKET_NR); // удалённый номер сети memcpy (addr_ipx.sa_netnum, remoteNetNum, IPX_NET_SIZE); // удалённый номер узла memcpy (addr_ipx.sa_nodenum, remoteNodeNum, IPX_NODE_SIZE); char* buff = “Test string”; // вот и собственно передача данных sendto (ipx_skt, buff, strlen (buff), 0, (sockaddr*)&addr_ipx, sizeof (addr_ipx)); Дальше следуют некоторые полезные сведения о работе с данными протоколами. Широковещательные пакеты
Широковещательные пакеты могут быть использованы, например, в качестве средства поиска клиентом сервера, в случае, когда известен порт (сокет IPX) нужного сервера, но не известен его сетевой адрес.
sockaddr_ipx addr_ipx; char* broadcast_msg = “Кое-что для передачи в широковещательном режиме”; SOCKET ipx_skt = socket (PF_IPX, SOCK_DGRAM, NSPROTO_IPX); addr_ipx.sa_family = AF_IPX; // номер сокета, данный номер используется при посылке SAP пакетов в Netware addr_ipx.sa_socket = htons (0x0452); // = IPXSKT_SAP // для широковещательных пакетов memset (addr_ipx.sa_netnum, 0, IPX_NET_SIZE); memset (addr_ipx.sa_nodenum, 0xff, IPX_NODE_SIZE); // устанавливаем флаг для посылки широковещательных пакетов int set_broadcast = 1; setsockopt (ipx_skt, SOL_SOCKET, SO_BROADCAST, (char*)& set_broadcast, sizeof (set_broadcast)); //собственно само широковещание sendto (ipx_skt, broadcast_msg, strlen (broadcast_msg), MSG_DONTROUTE, (sockaddr*)&addr_ipx, sizeof (addr_ipx));
Установка, изменение DataStreamType в заголовке SPX пакета
Это в принципе может быть использовано в собственных целях, например для искусственной сегментации своих данных для совместимости разных реализаций протокола. Например, некоторые реализации протокола для ДОС поддерживают максимальную длину пакета в 512 байт, либо принудительно ограниченную сетевыми модулями, они и используют DataStreamType, чтобы указать последнюю порцию данных.
Устанавливается следующим образом: // Можно использовать любое значение между 0 — 0xfd // следующие значения зарезервированы // #define SPX_HANG_UP 0xFE // #define SPX_HANG_UP_ACK 0xFF int stream_type = 0x05; setsockopt (spx_skt, NSPROTO_IPX, IPX_DSTYPE, (char*)&stream_type, sizeof(stream_type);
Причём данную установку надо делать перед каждым send. Работает нормально при посылке данных ДОС клиенту, а при приеме пакетов WIN клиентом от ДОС клиента DataStreamType не устанавливается, т.е. не получается установленное значение DataStreamType ДОС клиентом. Возможен обход данной проблемы при помощи следующего фрагмента кода:
int rcv; // количество принятых байтов за один recv int rcv_total = 0; // общее количество принятых байт do< // прием данных rcv = recv (spx_socket, rd_buffer + rcv_total, MAX_BUF_SIZE - rcv_total, 0); if (rcv > 0) rcv_total += rcv; // если мы что-то получили >while (rcv > 0); // пока принимаются данные Данный метод хорош еще тем, что WIN клиент может принять один пакет вместо нескольких посланных ДОС клиентом.
Особенности получения пакетов через raw socket в Linux
Linux (в отличии, к примеру, от FreeBSD) позволяет использовать сырые сокеты не только для отправки, но и для получения данных. В этом месте существуют интересные грабли, на которые я наступил. Теперь спешу показать их тем, кто еще на знает, чтобы каждый, используя свой любимый язык программирования, будь то C++ или Python, мог опробовать их в деле.
Суть граблей изображена на рисунке, чтобы те, кто уже в курсе, не тратили свое время.
Я буду писать примеры на С, но вы можете перенести их и на другие языки, предоставляющие возможность низкоуровневой работы со стеком TCP\IP в Linux.
Некоторые понятия
Напомню, что для инициализации сырого сокета мы передаем параметр, обозначающий тип протокола. Например UDP:
socket(AF_INET, SOCK_RAW, IPPROTO_UDP)
Этот протокол я буду называть уровнем на котором работает сырой сокет. В примере мы создали сырой сокет на уровне UDP.
Уровень сырого сокета не ограничивает вас в формировании пакета на отправку, вы можете самостоятельно сформировать как UDP, так и IP заголовок. А вот при получении данных начинается самое интересное…
Грабли
Допустим мы создали 2 сырых сокета на уровне UDP и воспользовались одним из них для отправки UDP пакета на UDP эхо сервер. Эхо вернет нам UDP payload обратно. Так вот, Стек TCP\IP скопирует полученный пакет на все сырые сокеты того уровня, который указан в поле Protocol IP заголовка пришедшего пакета. Еще раз повторюсь — на ВСЕ, даже те, которые открыты в других приложениях (по этой причине приложение, оперирующее сырыми сокетами может быть запущено только с правами суперпользователя). Так как UDP эхо сервер отвечает UDP пакетом, то все сырые сокеты UDP уровня его получат.
Отметим еще одну важную особенность. Не зависимо от уровня сырого сокета, ему доставляется полный пакет, включающий IP заголовки.
Таким образом, каждый сырой сокет в Linux является сниффером на том уровне, на котором он был создан. Следует помнить об этом при разработке приложений.
Пример
Не стал нагружать заметку кодом. Для тех, кому интересно попробовать, я
выложил свой пример на github. Там cmake проект, который собирает простенький UDP эхо-сервер и приложение, создающее 2 сырых сокета уровня UDP, один из которых посылает данные, но оба отправляются в epoll в ожидании ответа. Для чистоты эксперимента эхо-сервер и пример желательно пустить на разных машинах (не забудьте поправить код в соответствии вашим IP-шникам). Для интереса можно запустить несколько экземпляров примера.
Сокеты
— это один конец двустороннего канала связи между двумя программами, работающими в сети. Соединяя вместе два сокета, можно передавать данные между разными процессами (локальными или удаленными). Реализация сокетов обеспечивает инкапсуляцию протоколов сетевого и транспортного уровней.
Первоначально сокеты были разработаны для UNIX в Калифорнийском университете в Беркли. В UNIX обеспечивающий связь метод ввода-вывода следует алгоритму open/read/write/close. Прежде чем ресурс использовать, его нужно открыть, задав соответствующие разрешения и другие параметры. Как только ресурс открыт, из него можно считывать или в него записывать данные. После использования ресурса пользователь должен вызывать метод Close(), чтобы подать сигнал операционной системе о завершении его работы с этим ресурсом.
Когда в операционную систему UNIX были добавлены средства межпроцессного взаимодействия (Inter-Process Communication, IPC) и сетевого обмена, был заимствован привычный шаблон ввода-вывода. Все ресурсы, открытые для связи, в UNIX и Windows идентифицируются дескрипторами. Эти дескрипторы, или описатели (handles), могут указывать на файл, память или какой-либо другой канал связи, а фактически указывают на внутреннюю структуру данных, используемую операционной системой. Сокет, будучи таким же ресурсом, тоже представляется дескриптором. Следовательно, для сокетов жизнь дескриптора можно разделить на три фазы: открыть (создать) сокет, получить из сокета или отправить сокету и в конце концов закрыть сокет.
Интерфейс IPC для взаимодействия между разными процессами построен поверх методов ввода-вывода. Они облегчают для сокетов отправку и получение данных. Каждый целевой объект задается адресом сокета, следовательно, этот адрес можно указать в клиенте, чтобы установить соединение с целью.
Типы сокетов
Существуют два основных типа сокетов — потоковые сокеты и дейтаграммные.
Потоковые сокеты (stream socket)
Потоковый сокет — это сокет с установленным соединением, состоящий из потока байтов, который может быть двунаправленным, т, е. через эту конечную точку приложение может и передавать, и получать данные.
Потоковый сокет гарантирует исправление ошибок, обрабатывает доставку и сохраняет последовательность данных. На него можно положиться в доставке упорядоченных, сдублированных данных. Потоковый сокет также подходит для передачи больших объемов данных, поскольку накладные расходы, связанные с установлением отдельного соединения для каждого отправляемого сообщения, может оказаться неприемлемым для небольших объемов данных. Потоковые сокеты достигают этого уровня качества за счет использования протокола . TCP обеспечивает поступление данных на другую сторону в нужной последовательности и без ошибок.
Для этого типа сокетов путь формируется до начала передачи сообщений. Тем самым гарантируется, что обе участвующие во взаимодействии стороны принимают и отвечают. Если приложение отправляет получателю два сообщения, то гарантируется, что эти сообщения будут получены в той же последовательности.
Однако, отдельные сообщения могут дробиться на пакеты, и способа определить границы записей не существует. При использовании TCP этот протокол берет на себя разбиение передаваемых данных на пакеты соответствующего размера, отправку их в сеть и сборку их на другой стороне. Приложение знает только, что оно отправляет на уровень TCP определенное число байтов и другая сторона получает эти байты. В свою очередь TCP эффективно разбивает эти данные на пакеты подходящего размера, получает эти пакеты на другой стороне, выделяет из них данные и объединяет их вместе.
Потоки базируются на явных соединениях: сокет А запрашивает соединение с сокетом В, а сокет В либо соглашается с запросом на установление соединения, либо отвергает его.
Если данные должны гарантированно доставляться другой стороне или размер их велик, потоковые сокеты предпочтительнее дейтаграммных. Следовательно, если надежность связи между двумя приложениями имеет первостепенное значение, выбирайте потоковые сокеты.
Сервер электронной почты представляет пример приложения, которое должно доставлять содержание в правильном порядке, без дублирования и пропусков. Потоковый сокет рассчитывает, что TCP обеспечит доставку сообщений по их назначениям.
Дейтаграммные сокеты (datagram socket)
Дейтаграммные сокеты иногда называют сокетами без организации соединений, т. е. никакого явного соединения между ними не устанавливается — сообщение отправляется указанному сокету и, соответственно, может получаться от указанного сокета.
Потоковые сокеты по сравнению с дейтаграммными действительно дают более надежный метод, но для некоторых приложений накладные расходы, связанные с установкой явного соединения, неприемлемы (например, сервер времени суток, обеспечивающий синхронизацию времени для своих клиентов). В конце концов на установление надежного соединения с сервером требуется время, которое просто вносит задержки в обслуживание, и задача серверного приложения не выполняется. Для сокращения накладных расходов нужно использовать дейтаграммные сокеты.
Использование дейтаграммных сокетов требует, чтобы передачей данных от клиента к серверу занимался . В этом протоколе на размер сообщений налагаются некоторые ограничения, и в отличие от потоковых сокетов, умеющих надежно отправлять сообщения серверу-адресату, дейтаграммные сокеты надежность не обеспечивают. Если данные затерялись где-то в сети, сервер не сообщит об ошибках.
Кроме двух рассмотренных типов существует также обобщенная форма сокетов, которую называют необрабатываемыми или сырыми.
Сырые сокеты (raw socket)
Главная цель использования сырых сокетов состоит в обходе механизма, с помощью которого компьютер обрабатывает TCP/IP. Это достигается обеспечением специальной реализации стека TCP/IP, замещающей механизм, предоставленный стеком TCP/IP в ядре — пакет непосредственно передается приложению и, следовательно, обрабатывается гораздо эффективнее, чем при проходе через главный стек протоколов клиента.
По определению, — это сокет, который принимает пакеты, обходит уровни TCP и UDP в стеке TCP/IP и отправляет их непосредственно приложению.
При использовании таких сокетов пакет не проходит через фильтр TCP/IP, т.е. никак не обрабатывается, и предстает в своей сырой форме. В таком случае обязанность правильно обработать все данные и выполнить такие действия, как удаление заголовков и разбор полей, ложится на получающее приложение — все равно, что включить в приложение небольшой стек TCP/IP.
Однако нечасто может потребоваться программа, работающая с сырыми сокетами. Если вы не пишете системное программное обеспечение или программу, аналогичную анализатору пакетов, вникать в такие детали не придется. Сырые сокеты главным образом используются при разработке специализированных низкоуровневых протокольных приложений. Например, такие разнообразные утилиты TCP/IP, как trace route, ping или arp, используют сырые сокеты.
Работа с сырыми сокетами требует солидного знания базовых протоколов TCP/UDP/IP.
Порты
Порт определен, чтобы разрешить задачу одновременного взаимодействия с несколькими приложениями. По существу с его помощью расширяется понятие IP-адреса. Компьютер, на котором в одно время выполняется несколько приложений, получая пакет из сети, может идентифицировать целевой процесс, пользуясь уникальным номером порта, определенным при установлении соединения.
Сокет состоит из IP-адреса машины и номера порта, используемого приложением TCP. Поскольку IP-адрес уникален в Интернете, а номера портов уникальны на отдельной машине, номера сокетов также уникальны во всем Интернете. Эта характеристика позволяет процессу общаться через сеть с другим процессом исключительно на основании номера сокета.
За определенными службами номера портов зарезервированы — это широко известные номера портов, например порт 21, использующийся в FTP. Ваше приложение может пользоваться любым номером порта, который не был зарезервирован и пока не занят. Агентство Internet Assigned Numbers Authority (IANA) ведет перечень широко известных номеров портов.
Обычно приложение клиент-сервер, использующее сокеты, состоит из двух разных приложений — клиента, инициирующего соединение с целью (сервером), и сервера, ожидающего соединения от клиента.
Например, на стороне клиента, приложение должно знать адрес цели и номер порта. Отправляя запрос на соединение, клиент пытается установить соединение с сервером:
Если события развиваются удачно, при условии что сервер запущен прежде, чем клиент попытался с ним соединиться, сервер соглашается на соединение. Дав согласие, серверное приложение создает новый сокет для взаимодействия именно с установившим соединение клиентом:
Теперь клиент и сервер могут взаимодействовать между собой, считывая сообщения каждый из своего сокета и, соответственно, записывая сообщения.
Работа с сокетами в .NET
Поддержку сокетов в .NET обеспечивают классы в пространстве имен System.Net.Sockets — начнем с их краткого описания.
Класс | Описание |
---|---|
MulticastOption | Класс MulticastOption устанавливает значение IP-адреса для присоединения к IP-группе или для выхода из нее. |
NetworkStream | Класс NetworkStream реализует базовый класс потока, из которого данные отправляются и в котором они получаются. Это абстракция высокого уровня, представляющая соединение с каналом связи TCP/IP. |
TcpClient | Класс TcpClient строится на классе Socket, чтобы обеспечить TCP-обслуживание на более высоком уровне. TcpClient предоставляет несколько методов для отправки и получения данных через сеть. |
TcpListener | Этот класс также построен на низкоуровневом классе Socket. Его основное назначение — серверные приложения. Он ожидает входящие запросы на соединения от клиентов и уведомляет приложение о любых соединениях. |
UdpClient | UDP — это протокол, не организующий соединение, следовательно, для реализации UDP-обслуживания в .NET требуется другая функциональность. |
SocketException | Это исключение порождается, когда в сокете возникает ошибка. |
Socket | Последний класс в пространстве имен System.Net.Sockets — это сам класс Socket. Он обеспечивает базовую функциональность приложения сокета. |
Класс Socket
Класс Socket играет важную роль в сетевом программировании, обеспечивая функционирование как клиента, так и сервера. Главным образом, вызовы методов этого класса выполняют необходимые проверки, связанные с безопасностью, в том числе проверяют разрешения системы безопасности, после чего они переправляются к аналогам этих методов в Windows Sockets API.
Прежде чем обращаться к примеру использования класса Socket, рассмотрим некоторые важные свойства и методы этого класса:
HackWare.ru
Этичный хакинг и тестирование на проникновение, информационная безопасность
Трассировка сетевого маршрута
Оглавление
Что такое трассировка. Для чего нужна трассировка узлов
Трассировка маршрута пакета до сетевого хоста показывает все промежуточные узлы, через которые проходит пакет, пока доберётся до указанной цели. То есть с помощью трассировки можно узнать, по каким узлам, с какими IP адресами, передаётся пакет прежде чем быть доставленным до точки назначения.
Трассировка может применяться для выявления связанных с работой компьютерной сети проблем, а также для исследования сети (определения структуры сети, поиска промежуточных сетевых узлов).
Принципы работы трассировки
Пересылаемые сетевые пакеты состоят из двух областей: заголовки и данные. В заголовках находится разная информация, например, IP адреса пункта отправки и пункта назначения, порты отправки и назначения, тип пакета, контрольная сумма пакета и прочее. Среди полей заголовка, у IP протокола есть такое поле как time to live (TTL) — время жизни пакета. Это счётчик с числом, которое уменьшается на единицу каждый раз, когда пакет проходит новый узел. Этот счётчик сделан для того, чтобы проблемный пакет (например, при ошибке, повлекшей закольцованный маршрут) не путешествовал по сети бесконечно. То есть любой пакет пройдя определённое количество узлов в конце-концов достигнет точки назначения или будет отброшен одним из узлов сети, когда закончится «время жизни».
Когда счётчик TTL становится равным нулю, очередной шлюз просто не пересылает этот пакет дальше. Но при этом шлюз на тот IP адрес, откуда пришёл пакет с истёкшим временем жизни, отправляет по протоколу ICMP ответ TIME_EXCEEDED (время жизни кончилось). И этот ответ содержит IP адрес шлюза, где пакет закончил своё существование.
Так вот, суть трассировки в том, что отправляется один пакет с временем жизни (TTL) установленным на единицу — первый шлюз уменьшает значение на единицу, смотрит, что счётчик стал равен нулю, никуда не отправляет этот пакет, зато нам отправляет ответ, что пакет «умер». Мы и так знаем, что пакет умер — из этого ответа нас интересует только IP адрес шлюза, где с пакетом случилось это несчастье. Затем отправляется пакет со счётчиком установленным на 2 — пакет проходит первый шлюз (его IP мы уже знаем), но несчастье (счётчик достигает нуля) с ним случается уже на втором шлюзе — мы получаем ICMP ответ с IP этого шлюза. Затем отправляется следующий пакет и т. д., пока не будут определены все узлы до нужного нам сетевого хоста.
Виды трассировки
Имеется несколько видов трассировки. В основном они различаются отправляемым пакетом — это может быть пакет транспортного протокола TCP или UDP, либо протокола межсетевых управляющих сообщений ICMP, либо сырой IP пакет.
Иногда из-за файерволов или настройки сетевых узлов не удаётся получить IP адрес узла. В этом случае можно попробовать использовать другой метод, который может дать результаты.
Это можно проиллюстрировать на следующих двух примерах трассировки до одного и того же хоста:
Звёздочки говорят о том, что мы не узнали часть узлов.
Благодаря изменению метода трассировки удалось узнать все промежуточные узлы. Другие методы могут дать отличные от показанных результаты.
Некоторые программы позволяют выбирать метод трассировки, менять номер порта, а также устанавливать значения некоторых полей в заголовке пакета.
Программы для трассировки
Имеется много разных утилит для трассировки, некоторые из них поддерживают различные методы трассировки. Примеры таких программ:
- traceroute
- tracepath
- mtr и mtr-gtk (соответственно, консольная и графическая версия)
- lft
- tcptraceroute
Ещё определять узлы маршрута пакета можно с помощью Nmap (несколькими способами) и даже с помощью ping!
В этой статье я рассмотрю все перечисленные выше программы. Начнём знакомство с traceroute, поскольку в ней реализовано больше всего методов сканирования.
traceroute
Как пользоваться traceroute
Для запуска трассировки достаточно указать IP или сайт, до которого вы хотите проследить маршрут:
Если вас интересуют ближайшие узлы (локальная сеть, например), то в качестве конечного пункта можно выбрать любой сайт.
Методы трассировки в traceroute
В современном сетевом окружении традиционные методы трассировки не всегда применимы из-за широкого распространения файерволов. Такие файерволы фильтруют «маловероятные» UDP порты или даже ICMP echo пакеты. Для решения этой проблемы реализованы некоторые дополнительные методы трассировки сети (включая tcp). Эти методы пытаются использовать другие протокол и порт источника/назначения, чтобы обойти файерволы (чтобы файерволы воспринимали их как просто начало сетевой сессии разрешённого типа).
У разных методов есть специфичные для них опции — они зависят от используемого протокола. Эти опции метода можно указать с помощью опции -O. Несколько опций разделяются запятой (или используйте в командной строке несколько -O). Каждый метод может иметь свои собственные особенные опции или может не иметь из вовсе.
default
Метод по умолчанию — используется если не указан другой, либо можно указать явно опцией -M default. Это традиционный, древний метод трассировки маршрута.
Пакетами зондирования являются udp датаграммы с так называемым "unlikely" (маловероятным) портом назначения. Первым "unlikely" портом зондирования является 33434 затем для каждого следующего зонда он увеличивается на единицу. Поскольку ожидается, что порт не используется, то хост назначения обычно возвращает конечный ответ "icmp unreach port". Номер порта можно поменять (об этом ниже).
Данный метод могут выполнять непривилегированные пользователи.
icmp
Сейчас это самый типичный метод, он использует в качестве зондов пакеты icmp echo. Если вы можете пинговать хост назначения, то icmp трассировка также применима. Для выбора этого метода используется опция -M icmp или её короткий вариант -I.
Этот метод разрешён для непривилегированных пользователей.
У этого метода имеется две специфичные опции
raw
Использовать только сырые сокеты (традиционный способ).
По умолчанию этот методы пробуется первым (по причинам совместимости), затем новые сокеты dgram icmp в качестве резервного варианта.
dgram
Использовать только сокеты dgram icmp
tcp
Хорошо известный современный метод, предназначен для обхода файерволов. Для использования укажите опцию -M tcp либо короткий вариант -T. Использует постоянный порт назначения (по умолчанию это 80, http).
Если на сетевом пути трассировки присутствуют какие-либо фильтры, то весьма вероятно, что фильтруются «необычные» udp порты (такие, как используется методом по умолчанию) или даже icmp echo (как для icmp), и весь процесс трассировки остановится на таком файерволе. Для обхода сетевого фильтра нам нужно использовать только комбинации из разрешённой пары протокол/порт. Если мы делаем трассировку, допустим, до почтового сервера, то весьма вероятно, что с помощью -T -p 25 мы можем достичь его, даже если с помощью -I не получается это сделать.
Этот метод использует хорошо известную «технику полуоткрытых соединений», благодаря которой приложения на компьютере назначения вовсе не видят наши пакеты для исследования (зонды). Обычно отправляется tcp syn. Для портов, которые не прослушиваются, мы получаем ответ tcp reset — и всё готово. Для активно прослушиваемых портов мы получаем tcp syn+ack, но отвечаем на это tcp reset (вместо ожидаемого tcp ack), таким образом удалённая tcp сессия сбрасывается, а прослушивающее порт приложение даже не получает уведомление.
Для метода tcp имеется несколько опций:
syn,ack,fin,rst,psh,urg,ece,cwr
Устанавливает определённые tcp флаги для пакета зондирования, можно использовать любую их комбинацию.
flags=ЧИСЛО
Устанавливает поле флагов в tcp заголовке на точное ЧИСЛО.
ecn
Отправляет пакет syn с флагами tcp ECE и CWR (для Explicit Congestion Notification, rfc3168).
sack,timestamps,window_scaling
Использует соответствующую опцию tcp заголовка в исходящем пакете зондирвоания.
sysctl
Использует настройки текущей sysctl (/proc/sys/net/*) для опций tcp заголовка для вышеприведённых опций и ecn. Всегда установлено на значение по умолчанию, если ничего не указано.
mss=ЧИСЛО
Использовать значение ЧИСЛО для опции tcp заголовка maxseg (когда syn).
info
Печатать tcp флаги финальных tcp ответов когда достигнут целевой хост. Помогает определить, прослушивает ли приложение порт и другие полезные вещи.
Опциями по умолчанию являются syn,sysctl.
tcpconn
Начальная реализация tcp метода просто использующего вызов connect(2), который открывает полную tcp сессию. Не рекомендуется для нормального использование, поскольку всегда влияет на приложение прослушивающее порт на хосте назначения.
Для задействования этого метода используйте опцию -M tcpconn.
udp
Использует udp датаграммы с постоянным портом назначения (по умолчанию 53, dns). Также предназначена для обхода файерволов. Для использования этого метода трассировки укажите опцию -M udp или сокращённый вариант -U.
Обратите внимание, что в отличие от tcp метода, соответствующее приложение на хосте назначения всегда получает наши зонды (со случайными данными) что может смутить его. В большинстве случаев оно не ответит на наши пакеты, поэтому мы никогда не увидим последний хоп (узел) в пути трассировки. (К счастью, кажется что по крайней мере DNS серверы присылают какой-то ответ).
Этот метод не требует повышенных прав.
udplite
Использует для зондов датаграммы udplite (с постоянным портом назначения, по умолчанию 53). Для активации этого метода укажите опцию -M udplite или -UL.
Этот метод не требует повышенных прав.
coverage=ЧИСЛО
Устанавливает покрытие отправки udplite на ЧИСЛО.
dccp
Использует для зондов пакеты DCCP Request (rfc4340). Этот метод можно задействовать опциями -M dccp или -D.
Этот метод использует такую же «технику полуоткрытых соединений», которая используется для TCP. Портом назначения по умолчанию является 33434.
service=ЧИСЛО
Устанавливает сервисный код DCCP на ЧИСЛО (по умолчанию это 1885957735).
raw
Этим методом отправляются сырые пакеты указанного протокола. Для вызова этого метода используйте опцию -M raw или -P ПРОТОКОЛ.
Не используется специфичные для транспортных протоколов заголовки, только заголовки IP протокола.
Подразумевает -N 1 -w 5 .
protocol=ПРОТОКОЛ
Использовать IP ПРОТОКОЛ (по умолчанию 253).
Список протоколов, инкапсулируемых в IP на Википедии, в первоисточнике.
Как ускорить трассировку. Как отключить обратное преобразование IP в имена хостов при трассировке
Чуть выше описаны принципы работы трассировки — отправка пакетов с постоянно увеличивающимся сроком жизни. На самом деле — все пакеты (с TTL 1, с TTL 2, с TTL 3 и т. д.) можно отправить одновременно. И именно так это и происходит — по умолчанию отправляются 16 пакетов за раз (количество можно изменить опцией -N). Это делается для ускорения трассировки.
Поэтому в действительности трассировка выполняется очень быстро. Те 1-2 секунды, которые как нам кажется определяются узлы сети, на самом деле тратятся на получение имён хостов для IP. С помощью опции -n это можно отключить.
Используя программу time можно замерить время выполнения программы с опцией -n и без неё:
Время выполнения самой трассировки 0,206s, а время трассировка+определение имени хостов получилось 2,360s, то есть в 10 раз дольше.
Трассировка IPv6
По умолчанию программа получает IP для указанного для трассировки хоста и на основе полученного IP адреса автоматически определяет, какой протокол используется: IPv4 или IPv6. Если получены IP для обоих протоколов, то по умолчанию используется IPv4.
С помощью опций -4 и -6 можно явно указать желаемый протокол.
Сеть, из которой делается трассировка с опцией -6, должна поддерживать IPv6, иначе ничего не получится.
Изменение порта
Поменять порт назначения можно с помощью опции:
Для UDP трассировки указанный порт будет использовать в качестве базового (номер порта назначения будет увеличиваться для каждого зонда).
Для ICMP трассировки указанное число будет использоваться в качестве начальное значение ICMP последовательности (также увеличенное для каждого зонда).
Для TCP и других указанный порт будет использоваться в качестве постоянного порта назначения к которому нужно подключиться.
Обычно это не требуется, но также можно указать и порт источника, это делается опцией:
Эта опция подразумевает -N 1 -w 5 . Обычно исходные порты (если это примениму к выбранному методу трассировки) выбираются системой.
Как начать трассировку с определённого узла. Как уменьшить или увеличить число узлов для трассировки
С помощью опции -f можно указать номер узла, с которого следует начать трассировку. По умолчание значение равно 1.
С помощью опции -m можно указать максимальное число хопов для трассировки, по умолчанию установлено на 30.
Выбор интерфейса для трассировки
По умолчанию пакеты отправляются с того интерфейса, для которого настроен маршрут по умолчанию. Но следующей опцией можно сделать так, что traceroute будет отправлять пакеты с указанного в строке команды интерфейса:
Как показать к какой автономной системе принадлежит узел при трассировке
Каждый IP адрес привязан к Автономной системе (AS). С помощью опции -A вы можете включить запрос номера AS для каждого узла по пути трассировки, например:
Как можно видеть, автономная система не определена для локальных IP 10.*.*.* — что вполне логично, так как эти адреса никому не назначены. Что касается адреса 192.168.1.1 и автономной единицы AS198949, то это какая-то ошибка.
Как можно увидеть из вывода предыдущей команды, первые четыре узла имеют локальный IP адреса. Узлы с 5 по 9 принадлежат одной автономной системе AS38082/AS7470. Предпоследние два узла принадлежат одной автономной системе AS12389 и последние два узла также принадлежат одной автономной системе AS48666 — интернет-провайдеру, на котором размещён сайт suip.biz.
Опции traceroute
У команды traceroute имеются и другие опции которые могут вам пригодиться. Вы можете ознакомиться с ними в справочной странице данной программы:
tracepath
Программа tracepath схожа с traceroute, но использует только одну технику трассировки: UDP, для которой можно указать свой порт. Из-за выбранной техники, программа не требует повышенных привилегий.
В первой колонке рядом с номера узла может стоять знак вопроса — он означает, что в присланном ответе отсутствует номер TTL и программа пытается его предположить.
Вместо звёздочек, если IP не узнан, пишется no reply.
В последнем столбце может быть цифра и слово asymm. Слово asymm означает, что маршрут является ассиметричным — то есть от нас до этого узла пакет идёт по одному пути, а от этого узла к нам пакет проходит по другому пути. Цифра означает возможное количество хопов от этого узла до нас — но информация не является надёжной.
У tracepath не очень много опций:
-4
Использовать только IPv4
-6
Использовать только IPv6
-n
Не печатать имя хоста, а печатать цифровое значение IP.
-b
Печатать и имя хоста и IP адрес в цифровом виде.
-l
Установить начальную длину пакета вместо 65535 для tracepath или 128000 для tracepath6.
-m
Установить максимальное число хопов (или максимум TTL) — то есть количество максимально «простукиваемых» узлов. По умолчанию 30.
-p
Установить начальный порт назначения.
mtr и mtr-gtk (консольная и графическая версия)
Программа mtr совмещает в себе функциональность программа traceroute и ping в едином инструменте диагностики сети. То есть эта программа показывает маршрут до указанного узла и непрерывно пингует каждые хоп и при этом собирает общую статистику потерь — на основе этих данных можно определить проблемный узел, на котором теряются пакеты.
Данная программа поддерживает несколько методов трассировки.
Также она поддерживает разные форматы вывода для сохранения результатов, например, опция -C, —csv для сохранения результатов в формате CSV (обратите внимание, что на самом в качестве разделителя используется не запятая, а точка с запятой), а также опция -j, —json для сохранения в формате вывода JSON.
С помощью опции -n, —no-dns можно отключить преобразование IP в имена хостов.
Опцией -b, —-show-ips можно включить отображение и имён хостов, и IP адресов.
Опцией -y n, —ipinfo n можно настроить вывод дополнительной информации о каждом IP хопа. В качестве n нужно указать цифру, которая означает:
У меня при любых значениях -y всегда показывается только номер автономной системы. К счастью, между различными видами можно переключаться по кругу используя кнопку y:
Опция -z, —aslookup отображает номер Автономной Системы (AS) для каждого хопа.
Опция -f NUM используется для установки номера первого TTL. По умолчанию равно 1.
Опция -m указывать максимальное число хопов (максимальное значение time-to-live) которое будет обрабатываться при трассировке. По умолчанию равно 30.
Опция -U ЧИСЛО устанавливает максимум незнакомых хостов. По умолчанию равно 5. Видимо, после достижения этого значения дальнейшая трассировка будет остановлена.
С помощью опции -u, —udp программа будет использовать датаграммы UDP вместо ICMP ECHO.
А опцией -T, —tcp можно установить использование TCP SYN пакетов вместо ICMP ECHO. PACKETSIZE игнорируется, поскольку SYN пакеты не могут содержать данные.
В mtr можно использовать даже SCTP протокол для трассировки, для этого укажите опцию -S, —sctp и будет задействованы пакеты Stream Control Transmission Protocol вместо ICMP ECHO.
Во время работы программы доступны интерактивные команды. Если нажать на d, то можно переключаться между различными отображениями:
Кнопкой r можно сбросить статистику.
Кнопкой o можно поменять порядок полей. Кстати, опцией -o можно установить, какие поля вы хотите отображать и их последовательность. Подробности смотрите по:
Программа lft имеет много опций трассировки и из описание следует, что программа пробует несколько комбинаций и автоматически выбирает лучшее решение. Честно говоря, я этого не заметил: результаты с ручным перебором разных методов трассировки позволяют подобрать наилучший вариант.
Программа хорошо документирована и при желании может использоваться в качестве альтернативы traceroute.
tcptraceroute
В программе tcptraceroute используются пакеты только одного протокола TCP. В заголовках этих пакетов опциями можно установить разные флаги. В программе traceroute также можно устанавливать флаги протокола TCP, причём возможностей для настройки больше.
Трассировка сети в Nmap
В Nmap для трассировки есть опция —traceroute, пример трассировки до сайта suip.biz:
Если вы не хотите сканировать порты, а хотите просто выполнить трассировку, то добавьте опцию -sn:
Кстати, это значительно сократить время до вывода результатов.
Бывает, что выводимые при трассировке программой nmap данные не являются полными. В этом случае попробуйте дополнительно добавить опцию -PE:
В Nmap можно установить опции в заголовке пакета IP протокола. Среди этих опций имеется такая, которая сохраняет в заголовке пакета пройденный маршрут. Но у этого варианта есть ряд ограничений:
- всего 9 слотов
- некоторые устройства игнорируют эту опцию
- некоторые устройства вообще не пропускают пакеты с установленной этой опцией
Тем не менее иногда это работает, пример команды:
Обратите внимание на строку:
В ней перечислены первые 9 узлов через которые прошёл пакет.
Трассировка программой ping
Программа ping также умеет записывать маршрут — для этого программу нужно запустить с опцией -R. Она в пакет ECHO_REQUEST добавляет опцию RECORD_ROUTE и отображает буфер маршрута возвращаемых пакетов. Эта та же опция, которую использует Nmap. Ограничения такие же: максимум 9 слотов, многие хосты игнорирует или отбрасывают эту опцию.
IP маршрута выводятся при каждом пинге. Если маршрут не меняется, то выводится надпись, что маршрут не изменился.
Несмотря на все ограничения опции RECORD_ROUTE, иногда она бывает единственным вариантом получить хоть какую-то информацию о маршруте, поскольку команда ping практически всегда присутствует и не требует повышенных привилегий для запуска.
Трассировка в Windows
В Windows для трассировки сети имеется встроенная команда tracert. У неё практически отсутствуют опции. Для запуска команды достаточно указать имя удалённого хоста:
Если вам недостаточно такой функциональности, то вы можете установить Nmap в Windows.
Заключение
Трассировка может быть полезной для изучения структуры сети (например, сети вашего Интернет-провайдера), а также для исправления проблем с передачей данных (например, для определения узла, дальше которого пакеты не проходят).
Самой богатой по функционалу для трассировки сети является программа traceroute. Другие программы также или содержат интересные опции или могут использоваться в качестве альтернатив, если ничего другое не доступно или если запуск traceroute прав суперпользователя.