Как найти середину интервала
Интервалы используются в математике по разным причинам. Интервал — это определенный сегмент набора данных. Например, интервал может быть от 4 до 8. Интервалы используются в статистике и в исчислении при получении интегралов. Интервалы также используются при попытке найти среднее из частотных таблиц. Средняя точка каждого интервала необходима для завершения этого процесса и определения среднего значения.
Найти верхний и нижний предел интервала. Например, интервал от 4 до 8 будет иметь 4 в качестве нижнего предела и 8 в качестве верхнего предела.
Суммируйте верхний и нижний предел. В примере 4 + 8 = 12.
Разделите сумму верхнего и нижнего пределов на 2. Результат — средняя точка интервала. В этом примере 12, деленное на 2, дает 6 как среднюю точку между 4 и 8.
Как найти абсолютное значение числа в математике
Распространенной задачей в математике является вычисление того, что называется абсолютным значением данного числа. Как правило, мы используем вертикальные полосы вокруг числа, чтобы отметить это, как видно на рисунке. Мы будем читать левую часть уравнения как абсолютное значение -4. Компьютеры и калькуляторы часто используют формат .
Как рассчитать размер выборки из доверительного интервала
Когда исследователи проводят опросы общественного мнения, они рассчитывают необходимый размер выборки на основе того, насколько точными они хотят, чтобы их оценки были. Размер выборки определяется уровнем достоверности, ожидаемой пропорцией и доверительным интервалом, необходимым для обследования. Доверительный интервал представляет запас .
Как найти середину координат
Средняя точка двух координат — это точка, которая находится точно посередине между двумя точками, или среднее значение двух точек. Вместо того, чтобы пытаться визуально определить полпути крутой линии, проведенной на координатной плоскости, вы можете использовать формулу средней точки. Формула средней точки — [(x1 + x2) / 2, (y1 + y2) / 2] — .
Совет 1: Как обнаружить середину интервала
При статистической обработке итогов изысканий самого различного рода полученные значения зачастую группируются в последовательность промежутков. Для расчета обобщающих колляций таких последовательностей изредка доводится вычислять середину интервала – «центральную варианту». Способы ее расчета довольно примитивны, но имеют некоторые особенности, вытекающие как из применяемой для измерения шкалы, так и из нрава группировки (открытые либо закрытые промежутки).
Инструкция
1. Если промежуток является участком постоянной числовой последовательности, то для нахождения ее середины используйте обыкновенные математические способы вычисления среднеарифметического значения. Минимальное значение интервала (его предисловие) сложите с максимальным (окончанием) и поделите итог напополам – это один из методов вычисления среднеарифметического значения. Скажем, это правило применимо, когда речь идет о возрастных интервала х. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, потому что (21+33)/2=27.
2. Изредка бывает комфортнее применять иной способ вычисления среднеарифметического значения между верхней и нижней границами интервала . В этом варианте вначале определите ширину диапазона – отнимите от максимального значения минимальное. После этого поделите полученную величину напополам и прибавьте итог к минимальному значению диапазона. Скажем, если нижняя граница соответствует значению 47,15, а верхняя – 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, потому что 47,15+(31,98/2) = 47,15+15,99 = 63,14.
3. Если промежуток не является участком обыкновенной числовой последовательности, то вычисляйте его середину в соответствии с повторяемостью и размерностью применяемой измерительной шкалы. Скажем, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.
4. Помимо обыкновенных (закрытых) промежутков статистические способы изысканий могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Скажем, открытый промежуток может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется способом аналогий – если все остальные диапазоны рассматриваемой последовательности имеют идентичную ширину, то предполагается, что и данный открытый промежуток имеет такую же размерность. В отвратном случае вам нужно определить динамику метаморфозы ширины промежутков, предшествующих открытому, и вывести его условную ширину, исходя из полученной склонности метаморфозы.
Совет 2: Как обнаружить середину
Изредка в повседневной деятельности может появиться надобность обнаружить середину отрезка прямой линии. Скажем, если предстоит сделать выкройку, эскиз изделия либо легко распилить на две равные части деревянный брусок. На поддержка приходит геометрия и немножко житейской смекалки.
Вам понадобится
- Циркуль, линейка; булавка, карандаш, нить
Инструкция
1. Воспользуйтесь обыкновенными инструментами, предуготовленными для измерения длины. Это самый легкой метод разыскать середину отрезка. Измерьте линейкой либо рулеткой длину отрезка, поделите полученное значение напополам и отмерьте от одного из концов отрезка полученный итог. Вы получите точку, соответствующую середине отрезка.
2. Существует больше точный метод нахождения середины отрезка, вестимый из курса школьной геометрии. Для этого возьмите циркуль и линейку, причем линейку может заменить всякий предмет подходящей длины с ровной стороной.
3. Установите расстояние между ножками циркуля так, дабы оно было равным длине отрезка либо же огромным, чем половина отрезка. После этого поставьте иглу циркуля в один из концов отрезка и проведите полуокружность так, дабы она пересекала отрезок. Переставьте иглу в иной конец отрезка и, не меняя размах ножек циркуля, проведите вторую полуокружность верно таким же образом.
4. Вы получили две точки пересечения полуокружностей по обе стороны от отрезка, середину которого мы хотим обнаружить. Объедините эти две точки при помощи линейки либо ровного бруска. Соединительная линия пройдет в точности посередине отрезка.
5. Если под рукой не оказалось циркуля либо длина отрезка значительно превышает возможный размах его ножек, дозволено воспользоваться простым приспособлением из подручных средств. Изготовить его дозволено из обыкновенной булавки, нитки и карандаша. Привяжите концы нитки к булавке и карандашу, при этом длина нитки должна немножко превышать длину отрезка. Таким импровизированным заменителем циркуля остается проделать шаги, описанные выше.
Видео по теме
Полезный совет
Довольно верно обнаружить середину доски либо бруска вы можете, использовав обыкновенную нитку либо шнур. Для этого отрежьте нить так, дабы она соответствовала длине доски либо бруска. Остается сложить нить верно напополам и разрезать на две равные части. Приложите один конец полученной мерки к концу измеряемого предмета, а 2-й конец будет соответствовать его середине.
Решение задач по статистике и выводы к ним
Задача по статистике №1. Найти параметры интервального ряда распределения по данным таблицы, а именно: моду, медиану, среднюю арифметическую величину, среднюю взвешенную величину, коэффициент вариации, среднее квадратическое отклонение.
Группы компаний по основным производственным фондам, млн. руб. (х)
Число компаний (fi)
Середина интервала (Xi) = (начало интервала+конец интервала)/2
Мы сразу добавили столбец «середина интервала». Для первой группы компаний рассчитали следующим образом: (10+25)/2=17,5 млн. руб. Для 2-5 групп расчеты произведены аналогично.
Теперь рассчитаем среднюю арифметическую величину.
средняя арифметическая = = (17,5+29+37,5+45,5+55,5)/5=37 млн. руб.
Далее рассчитаем среднюю взвешенную величину.
средняя взвешенная = = (17,5*2+29*8+37,5*14+45,5*9+55,5*3)/36=38 млн. руб.
Значение средневзвешенной величины можно считать более корректным, чем значение средней арифметической величины, поэтому далее в расчетах будем использовать среднюю взвешенную.
Теперь добавим в таблицу столбцы, данные которых нам понадобятся для расчета дисперсии.
Расчет средней величины в интервальном вариационном ряду
Расчет средней величины в интервальных вариационных рядах немного отличается от расчета в рядах дискретных. Как рассчитать среднюю арифметическую и среднюю гармоническую в дискретных рядах можно посмотреть вот ЗДЕСЬ. Такое различие вполне объяснимо – это связано с особенностью интервальных рядов, в которых изучаемый признак приведен в интервале от и до.
Итак, посмотрим особенности расчета на примере.
Пример 1. Имеются данные о дневном заработке рабочих предприятия.
Дневной заработок рабочего, руб. | Число рабочих, чел. |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Нам необходимо рассчитать среднедневную заработную плату рабочего.
Начало решения задачи будет аналогичным правилам расчета средней величины, которые можно посмотреть в этой статье.
Начинаем мы с определения варианты и частоты, поскольку ищем мы средний заработок за день, то варианта это первая колонка, а частота вторая. Данные у нас заданы явным количеством, поэтому расчет проведем по формуле средней арифметической взвешенной (так как данные приведены в табличном виде). Но на этом сходства заканчиваются и появляются новые действия.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Дело в том, что интервальный рад представляет осредняемую величину в виде интервала. 500-1000, 2000-2500 и так далее. Чтобы решить эту проблему необходимо провести промежуточные действия, и только потом подсчитать среднюю величину по основной формуле.
Что же требуется в данном случае сделать. Все достаточно просто, чтобы провести расчет нам нужно, чтобы варианта была представлена одним числом, а не интервалом. Для получения такого значения находят так называемое ЦЕНТРАЛЬНОЕ ЗНАЧЕНИЕ ИНТЕРВАЛА (или середину интервала). Определяется оно путем сложение верхней и нижней границ интервала и делением на два.
Проведем необходимые расчеты и подставим данные в таблицу.
И так далее по всем интервалам рассчитываем центральное значение. В итоге получаем следующие результаты.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ |
500-1000 | 15 | 750 |
1000-1500 | 30 | 1250 |
1500-2000 | 80 | 1750 |
2000-2500 | 60 | 2250 |
2500-3000 | 25 | 2750 |
Итого | 210 | — |
После того как мы рассчитали центральные значения далее проведем расчеты в таблицы и подставим итоговые данные в формулу, аналогично тому как мы уже рассматривали ранее.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ | x’f |
500-1000 | 15 | 750 | 11250 |
1000-1500 | 30 | 1250 | 37500 |
1500-2000 | 80 | 1750 | 140000 |
2000-2500 | 60 | 2250 | 135000 |
2500-3000 | 25 | 2750 | 68750 |
Итого | ∑f = 210 | — | ∑ x’f = 392500 |
В итоге получаем, что среднедневная заработная плата одного рабочего составляет 1869 рублей.
Это пример решения, если интервальный ряд представлен со всеми закрытыми интервалами. Но достаточно часто бывает, когда два интервала открытые, первый и последний. В таких ситуациях прямой расчет центрального значения невозможен, но есть два варианта как это сделать.
Пример 2. Имеются данные о продолжительности производственного стажа персонала предприятия. Рассчитать среднюю продолжительность стада одного сотрудника.
Длительность производственного стажа, лет | Число сотрудников, человек |
до 3 | 19 |
3-6 | 21 |
6-9 | 15 |
9-12 | 10 |
12 и более | 5 |
Итого | 70 |
В данном случае принцип решения останется точно таким же. Единственно, что поменялось в этой задаче, так это первый и последний интервалы. До 3 лет и 12 лет и более это и есть те самые открытые интервалы. Именно тут возникнет вопрос, а как же найти центральное значение интервала для таких интервалов.