Эталонная модель архитектуры открытых систем не включает какой уровень
Перейти к содержимому

Эталонная модель архитектуры открытых систем не включает какой уровень

  • автор:

11. Архитектура открытых систем

Общая модель вычислительной сети определяет характеристики сети в целом и характеристики и функции, входящих в неё основных компонентов .

Архитектура вычислительной сети – это описание её общей модели. Многообразие производителей вычислительных сетей и сетевых программных продуктов поставило проблему объединения сетей различных архитектур.

В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет выпущенная в 1984 г. Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Часто ее называют моделью архитектуры открытых систем

Открытая система – это система, взаимодействующая с другими системами в соответствии с принятыми стандартами. Модель взаимодействия открытых систем служит базой для производителей при разработке совместимого сетевого оборудования.

Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей.

Эта модель устанавливает способы передачи данных по сети, определяет стандартные протоколы, используемые сетевым и программным обеспечением. Модель представляет собой самые общие рекомендации для построения совместимых программных продуктов. Эти рекомендации должны быть реализованы как в аппаратуре, так и в программных средствах вычислительных сетей.

Модель взаимодействия открытых систем определяет процедуры передачи данных между системами ,которые открыты друг другу, благодаря совместному использованию ими соответствующих стандартов, хотя сами системы могут быть созданы на различных технических средствах. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью. Она рассматривает общие функции, а не специальные решения, поэтому не все реальные сети абсолютно точно ей следуют. Модель взаимодействия открытых систем состоит из семи уровней. На каждом уровне выполняются определённые сетевые функции. Нижние уровни (1 и 2) определяют физическую среду передачи данных и сопутствующей задачи (такие, как передачи битов данных через плату сетевого адаптера и кабель). Самые верхние уровни определяют, каким способом осуществляется доступ приложений к услугам связи. Чем выше уровень, тем более сложную задачу он решает. Перед подачей в сеть данные разбиваются на пакеты.

Пакет— это единица информации, передаваемая между устройствами сети как единое целое. На передающей стороне пакет проходит последовательно через все уровни системы сверху вниз. Затем он передаётся по сетевому кабелю на компьютер – получатель и опять проходит все уровни в обратном порядке.

12. Уровни модели osi . Иерархическая связь.

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию. Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней.

Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением. Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к. информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно «единицы» и «нули».

Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:

Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.

1.На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

Прикладной уровень — это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов, программы банковских терминалов и т.д. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

2.На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

3.На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней. Сеансовый уровень — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. В данном случае «подсеть» — это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

4. .На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

Транспортный уровень Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных. Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

Сетевой уровень — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. В данном случае «подсеть» — это по сути независимый сетевой кабель (иногда называемый сегментом). Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

6. Канальный уровень. Уровень соединения необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.

Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

7. Физический уровень. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов — только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.

Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.

Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.

Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают — поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.

Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.

Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.

Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.

Cетевая модель OSI

Cетевая модель OSI (Open Systems Interconnection model) – это эталонная модель взаимодействия открытых систем. Массово не используется, но благодаря ей можно понять, как работает аппаратная и программная части сети. На практике OSI применяют для упрощенного представления открытых систем (Ethernet, IP и т. д.). Сисадминам, сетевым инженерам кроме нее следует изучить модель TCP/IP.

Общие особенности сетевой модели

системный администратор картинка

У сетевой модели OSI всего 7 уровней, расположенных в иерархическом порядке. Верхний седьмой уровень – прикладной, а нижний первый – физический. Сетевая модель была разработана ещё в 1975 году для описания архитектуры и работы сетей, передающих данные. В процессе отправки информации всегда участвует 3 элемента:

  • отправитель;
  • получатель;
  • отправляемые и получаемые данные.

Так видит отправку файлов по беспроводным и проводным сетям обычный пользователь. Процедуру отправки и получения данных детально описывает OSI. На первом уровне информация представлена в виде бит. На седьмом она становится данными. Когда информация из бит переходит в данные происходит декапсуляция. Обратное преобразование с седьмого на первый уровень называется инкапсуляцией.

Информация на каждом уровне представляется своими протоколами. Любой файл при отправке по сети проходит процесс инкапсуляции и декапсуляции. Рассмотрим более подробно уровни представления модели OSI.

1 уровень – физический (L1)

На первом уровне передается сигнал и ток от оборудования отправителя к получателю. Информация отправляется в виде нулей и единиц. На каждом уровне есть свой блок данных протокола (PDU). На первом уровне PDU – это бит. Биты передаются по оптоволокну или по беспроводной сети.

К протоколам физического уровня относятся Bluetooth, Wi-Fi, TIA-449, ITU, GSM и т. д. RJ-45, RJ-11 тоже формально относятся к L1. В виде данных обработка информации начинается только на высоких уровнях модели (с 5 по 7).

2 уровень – канальный (L2)

К сети кроме отправителя и получателя практически всегда подключены другие устройства. Второй уровень отвечает за процедуру адресации, т. е. передачу информации нужному пользователю. При поступлении на L2 биты конвертируются в кадры. В результате процедуры преобразования получаются фреймы с адресом отправителя и получателя. Готовые кадры отправляются далее.

MAC и LLC – два подуровня L2. На MAC-подуровне происходит присвоение MAC-адресов пользовательским устройствам. LLC проверяет правильность передаваемой информации и автоматически если исправляет при наличии нарушений. На этом уровне работают мосты, коммутаторы и другая аппаратура.

На рынке до сих пор встречаются коммутаторы второго уровня. Они работают с MAC-адресами и не способны обрабатывать IP-адреса. Для обеспечения маршрутизации внутри виртуальных локальных сетей потребуется коммутатор третьего уровня. Их также называют многослойными. Кроме работы с MAC такие устройства могут распознавать IP-адреса и проводить тегирование ЛВС.

3 уровень – сетевой (L3)

На этом этапе определяется путь передачи данных и вводится новое понятие маршрутизации. На L3 используется 2 типа протоколов: с установкой и без установки соединения. Первый тип протоколов отправляет данные, содержащие полную информацию об отправителе и получателе. Это нужно для того, чтобы сетевые устройства получили полные адресные сведения и правильно определили путь для маршрутизации данных. Пакет будет передаваться от одного маршрутизатора (роутера) к другому, пока не попадет получателю.

Но у протоколов, работающих без установки соединения, есть один существенный минус – не соблюдение порядка передачи данных. Пользователь получит сообщения от отправителя не так, как он их отправлял, потому что разные пакеты могут быть отправлены разными маршрутами. В этом случае, прежде чем информация попадет к пользователю, она обрабатывается на L4 транспортными протоколами.

При использовании протоколов с установкой соединения данные поступают пользователю в том порядке, в котором они были отправлены. Но при их использовании сам процесс отправки информации занимает больше времени. Активнее всего на L3 используется протокол ARP для определения MAC-адреса по IP. Он также осуществляет обратное преобразование уникального идентификатора сетевого оборудования в IP.

L1, L2, L3 относятся к уровням среды. Они отвечают за перемещение данных по беспроводным сетям, кабелям, сетевому оборудованию. Более высокие уровни (с L4 по L7) называют уровнями хоста. Они взаимодействуют с пользовательскими устройствами (ПК, смартфонами, планшетами) и отвечают за представление данных.

4 уровень – транспортный (L4)

Отправка данных от отправителя к получателю регулируется отдельно. За этот процесс отвечает транспортный уровень. При передаче информации всегда теряется часть данных. Но для некоторых видов файлов (аудио, видео, фотографии) малые потери не критичны. Для передачи таких данных применяется протокол UDP. Он обеспечивает отправку пакетов без установки соединения.

При использовании UDP файл делится на датаграммы. Она содержит заголовки, которые необходимы для доставки до получателя. По этой причине датаграммы могут направляться пользователю разными маршрутами и в произвольном порядке. Если датаграмма потеряется, в файле появляется битые данные.

Если же пользователь отправляет файлы, чувствительные к потерям данных, применяется TCP. Он проверяет целостность передаваемой информации. При его использовании файл сегментируется. Но это происходит не всегда, а только с теми пакетами данных, размер которых превышает пропускную способность сетей. Сегментация также требуется, когда происходит отправка файлов по нестабильным сетям.

В повседневной работе инженеры взаимодействуют только с первыми четырьмя уровнями. Знать их особенности нужно для проектирования сетей и настройки оборудования. С остальными уровнями взаимодействуют разработчики ПО.

5 уровень – сеансовый (L5)

Этот уровень модели OSI относится к «верхним». Здесь осуществляются операции с чистыми данными. Отвечает пятый уровень за поддержку связи во время сеанса или сессии. Он обеспечивает правильное взаимодействие между приложениями, позволяет синхронизировать разные задачи, обмениваться данными. Благодаря L5 происходит поддержка и завершение сеанса.

Сеанс состоит из запросов и ответов, направляемых между разными приложениями. Сеансовый уровень используется в ПО, удаленно вызывающих процедуры. Примером работы L5 служит видеовызов в Skype или прямой эфир на широкую аудиторию. Во время сеанса нужно обеспечить синхронизованную передачу аудио и видео всем участникам конференции. За это и отвечают протоколы пятого уровня.

6 уровень – представления данных (L6)

Протоколы L6 осуществляют кодирование и декодирование информации. Информация, передаваемая по сети, на этом уровне не меняет своего содержания. Кроме перевода данных из одного формата в другой, L6 осуществляет и другие функции:

  • сжатие информации для увеличения пропускной способности канала;
  • шифрование данных для защиты от злоумышленников;
  • отправка запросов на прекращение сеанса связи.

Преобразование данных осуществляется автоматически и не требует от пользователя подтверждения. При получении данных с L5 автоматически устанавливаются стандартные форматы файлов.

7 уровень – прикладной (L7)

схема модели OSI

Другое название L7 – уровень приложений. Он отвечает за взаимодействие пользовательских приложений с работающей сетью. Этот уровень обеспечивает использование программами сетевых служб, отправку e-mail, обмен данными через торренты, предоставление ПО информации о сбоях и т. д. К протоколам прикладного уровня относят:

  • DNS;
  • FTP;
  • BOOTP;
  • BitTorrent;
  • NFS;
  • RTP;
  • SMTP и т. д.

В случае с HTTPS его принадлежность к L7 или L6 определяется способом использования. Если пользователь занимается веб-серфингом, то протокол относят к прикладному уровню. Если же осуществляется передача финансовых данных, то низкоуровневый HTTPS рассматривают как L6.

Седьмой уровень отвечает за представление данных в понятном пользователю виде. На этом этапе не происходит доставка или маршрутизация информации. Протоколы просто преобразуют данные для визуализации. Кроме преобразования данных они также обеспечивают доступ к удаленным БД, пересылают служебную информацию.

Недостатки OSI

Семиуровневая модель OSI считается устаревшей. На момент выхода она уже не поддерживала все актуальные стандарты, а сейчас эта проблема стала более выраженной. Поэтому современные компании ориентируются на TCP/IP. Еще один недостаток модели – плохо проработанная технология. Протоколы OSI дублируют друг друга, распределение функций немного странное.

При построении сети используются не все уровни модели ОСИ. Обычно для настройки оборудования инженерам нужно знать первые 4 уровня. L5 и L6 при работе с реальными сетями практически не применяются.

Модель ISO/OSI является закрытой. Её в основном использовали телекоммуникационные компании Франции, США, Англии. В тоже время стек протоколов TCP/IP разрабатывался как открытая модель, что и привлекло внимание разработчиков по всему миру.

Разница OSI и TCP/IP

Некоторые инженеры ошибочно предполагают, что модель OSI/ISO – это расширенная версия TCP/IP, но на самом деле такой подход не совсем верный. У этих моделей разное распределение межуровневых функций. В TCP/IP всего 4 уровня. На канальном уровне обмен данными осуществляется при помощи битов и кадров, а на сетевом с помощью пакетов. На транспортном уровне передаются сегменты и датаграммы. А на прикладном уровне происходит передача данных.

Прикладной уровень TCP/IP объединяет функции 3 уровней ОСИ: сеансового, представления данных и прикладного. Уровень доступа сетевой модели передачи цифровых данных охватывает физические и канальный уровни OSI. Сами службы тоже работают немного иначе. В TCP/IP со службами последовательности и подтверждения работает транспортный уровень. В OSI за это отвечает канальный уровень.

Считается, что при использовании TCP/IP инженер быстрее найдет неполадки в сети, т. к. диагностику проводят с самого нижнего уровня. Простейший пример поиска проблем на первом уровне – проверка целостности кабелей и их подключения к сетевой карте ПК.

Заключение

Уровни OSI модели позволяют получить общее представление об особенностях передачи данных в сетях. Рассмотренная архитектура является упрощенной. Полная модель ОСИ включает дополнительные уровни: пользовательский, сервисный и т. д. Но для диагностики сетей чаще всего применяется именно упрощенный вариант OSI.

Уровни эталонной модели OSI

Уровни эталонной модели OSI

Модель OSI (Open Systems Interconnection model) — это сетевая модель стека сетевых протоколов OSI/ISO. С помощью данной модели различные сетевые устройства могут взаимодействовать друг с другом. Модель определяет различные уровни взаимодействия систем. Каждый уровень выполняет определённые функции при таком взаимодействии.

В данной статье мы рассмотрим назначение уровней эталонной модели osi, с подробным описанием каждого из семи уровней модели.

Процесс организации принципа сетевого взаимодействия, в компьютерных сетях, довольно-таки сложная и непростая задача, поэтому для осуществления этой задачи решили использовать хорошо известный и универсальный подход — декомпозиция.

Декомпозиция — это научный метод, использующий разбиение одной сложной задачи на несколько более простых задач — серий (модулей), связанных между собой.

Многоуровневый подход:

  • все модулей дробятся на отдельные группы и сортируются по уровням, тем самым создавая иерархию;
  • модули одного уровня для осуществления выполнения своих задач посылает запросы только к модулям непосредственно примыкающего нижележащего уровня;
  • включается работу принцип инкапсуляции – уровень предоставляет сервис, пряча от других уровней детали его реализации.

На Международную Организацию по Стандартам (International Standards Organization, ISO, созданная в 1946 году) возложили задачу создания универсальной модели, которая четко разграничит и определит различные уровни взаимодействия систем, с поименованными уровнями и с наделением каждого уровня своей конкретной задачи. Эту модель назвали моделью взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI .

Эталонная Модель Взаимосвязи Открытых Систем (семиуровневая модель osi) введена в 1977 г.

После утверждения данной модели, проблема взаимодействия была разделена (декомпозирована) на семь частных проблем, каждая из которых может быть решена независимо от других.

Уровни эталонной модели

Уровни эталонной модели OSI представляют из себя вертикальную структуру, где все сетевые функции разделены между семью уровнями. Следует особо отметить, что каждому такому уровню соответствует строго описанные операции, оборудование и протоколы.

Взаимодействие между уровнями организовано следующим образом:

  • по вертикали — внутри отдельно взятой ЭВМ и только с соседними уровнями.
  • по горизонтали — организовано логическое взаимодействие — с таким же уровнем другого компьютера на другом конце канала связи (то есть сетевой уровень на одном компьютере взаимодействует с сетевым уровнем на другом компьютере).

Так как семиуровневая модель osi состоит из строгой соподчиненной структуры, то любой более высокий уровень использует функции нижележащего уровня, причем распознает в каком именно виде и каким способом (т.е. через какой интерфейс) нужно передавать ему поток данных.

Рассмотрим, как организуется передача сообщений по вычислительной сети в соответствии с моделью OSI. Прикладной уровень — это уровень приложений, то есть данный уровень отображается у пользователя в виде используемой операционной системы и программ, с помощью которой выполняется отправка данных. В самом начале именно прикладной уровень формирует сообщение, далее оно передается представительному уровню, то есть спускается вниз по модели OSI. Представительный уровень, в свою очередь, проводит анализ заголовка прикладного уровня, выполняет требуемые действия, и добавляет в начало сообщения свою служебную информацию, в виде заголовка представительного уровня, для представительного уровня узла назначения. Далее движение сообщения продолжается вниз, спускается к сеансовому уровню, и он, в свою очередь, также добавляет свои служебные данные, в виде заголовка вначале сообщения и процесс продолжается, пока не достигнет физического уровня.

Следует отметить, что помимо добавления служебной информации в виде заголовка вначале сообщения, уровни могут добавлять служебную информацию и в конце сообщения, который называется «трейлер».

Когда сообщение достигло физического уровня, сообщение уже полностью сформировано для передачи по каналу связи к узлу назначения, то есть содержит в себе всю служебную информацию добавленную на уровнях модели OSI.

Помимо термина «данные» (data), которое используется в модели OSI на прикладном, представительном и сеансовом уровнях, используются и другие термины на других уровнях модели OSI, чтобы можно было сразу определить на каком уровне модели OSI выполняется обработка.

В стандартах ISO для обозначения той или иной порции данных, с которыми работают протоколы разных уровней модели OSI, используется общее название — протокольный блок данных (Protocol Data Unit, PDU). Для обозначения блоков данных определенных уровней часто используются специальные названия: кадр (frame), пакет (packet), сегмент (segment).

Функции физического уровеня

  • на этом уровне стандартизируются типы разъемов и назначение контактов;
  • определяется, каким образом представляются «0» и «1»;
  • интерфейс между сетевым носителем и сетевым устройством (передает электрические или оптические сигналы в кабель или радиоэфир, принимает их и преобразует в биты данных);
  • функции физического уровня реализуются во всех устройствах, подключенных к сети;
  • оборудование, работающее на физическом уровне: концентраторы;
  • Примеры сетевых интерфейсов, относящихся к физическому уровню: RS-232C, RJ-11, RJ-45, разъемы AUI, ВNС .

Функции канального уровня

  • нулевые и единичные биты Физического уровня организуются в кадры — «frame». Кадр является порцией данных, которая имеет независимое логическое значение;
  • организация доступа к среде передачи;
  • обработка ошибок передачи данных;
  • определяет структуру связей между узлами и способы их адресации;
  • оборудование, работающее на канальном уровне: коммутаторы, мосты;
  • примеры протоколов, относящихся к канальному уровню: Ethernet , Token Ring , FDDI, Bluetooth , Wi-Fi , Wi-Max, X.25, FrameRelay, ATM.

Для ЛВС канальный уровень разбивается на два подуровня:

  • LLC (LogicalLinkControl) –отвечает за установление канала связи и за безошибочную посылку и прием сообщений данных;
  • MAC (MediaAccessControl) – обеспечивает совместный доступ сетевых адаптеров к физическому уровню, определение границ кадров, распознавание адресов назначения (например, доступ к общей шине).

Функции сетевого уровня

  • определения пути передачи данных;
  • определения кратчайшего маршрута; ; ;
  • отслеживания неполадок и заторов в сети.
  • передача сообщений по связям с нестандартной структурой;
  • согласование разных технологий;
  • упрощение адресации в крупных сетях;
  • создание барьеров на пути нежелательного трафика между сетями.

Оборудование, работающее на сетевом уровне: маршрутизатор.
Виды протоколов сетевого уровня:

  • сетевые протоколы (продвижение пакетов через сеть: IP , ICMP);
  • протоколы маршрутизации: RIP, OSPF;
  • протоколы разрешения адресов (ARP).

Функции транспортного уровня модели osi

  • обеспечивает приложениям (или прикладному и сеансовому уровням) передачу данных с требуемой степенью надежности, компенсирует недостатки надёжности более низких уровней;
  • мультиплексирование и демультиплексирование т.е. сбора и разборка пакетов;
  • протоколы предназначены для взаимодействия типа «точка—точка»;
  • начиная с данного уровня, протоколы реализуются программными средствами конечных узлов сети — компонентами их сетевых ОС;
  • примеры: протоколы TCP , UDP .

Функции сеансового уровня

  • поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время;
  • создание/завершение сеанса;
  • обмен информацией;
  • синхронизация задач;
  • определение права на передачу данных;
  • поддержанием сеанса в периоды неактивности приложений.
  • синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при сбоях.

Функции представительного уровня

  • отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям;
  • возможно осуществление:
  • сжатия/распаковки или кодирования/декодирования данных;
  • перенаправления запросов другому сетевому ресурсу, если они не могут быть обработаны локально.
  • пример: протокол SSL (обеспечивает секретных обмен сообщениями для протоколов прикладного уровня TCP/IP).

Функции прикладного уровня модели osi

  • является набором разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, организуют совместную работу;
  • обеспечивает взаимодействие сети и пользователя;
  • разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты;
  • отвечает за передачу служебной информации;
  • предоставляет приложениям информацию об ошибках;
  • пример: HTTP, POP3, SNMP, FTP.

Сетезависимые и сетенезависимые уровни семиуровневой модели osi

По своим функциональным возможностям семь уровней модели OSI можно отнести к одной из двух групп:

Это база. Сетевая модель OSI. Истоки

Ни один курс по сетевым технологиям не обходится без модели Open Systems Interconnection или попросту OSI. Как говорится, «это баааза», на принципах которой создавались другие современные модели. Хотя сегодня она не особо применяется на практике, это не значит, что сетевым специалистам не нужно понимать ее принципы.

История модели OSI задокументирована не полностью, но нам известны имена людей и названия организаций, вовлеченных в ее создание. Поэтому в этой статье были собраны известные факты об OSI на основе материалов из Интернета, например, онлайн-книги Джеймса Пелки «History And Development Of The Osi Model» и данных из интервью 1 и интервью 2 с Чарльзом Бакманом. Также на Habr я наткнулась на перевод статьи «OSI: Интернет, которого не было», где представлена история о моделях OSI и TCP/IP. Однако я решила самостоятельно изучить истоки OSI и больше углубится в этот период. Если вам интересно понять, что же тогда происходило, то приступим.

Ключевые герои в истории OSI

Начнем с главных героев этой истории. Honeywell Information System – американская корпорация, производящая электронные системы управления и автоматизации. Именно здесь была собрана группа ученых, работающая над созданием семиуровневой модели.

Спасибо Wikipedia за фото Чарльза БахманаСпасибо Wikipedia за фото Чарльза Бахмана

Майк Канепа (Mike Canepa) и Чарльз Бакман (Charles Bachman) – ученые и главы группы разработки модели OSI в компании Honeywell Information System. К сожалению, о Майке Канепа известно мало, но он часто упоминается в этой истории. А вот Чарльз Бакман является известным специалистом, интервью которого позволяют понять, что происходило в период разработки OSI. Он был пионером в области управления компьютерными системами и разработки баз данных. В группе создания OSI Чарльз также являлся главным техническим специалистом.

Юбер Циммерманн (Hubert Zimmerman) – французский инженер-программист, специалист по компьютерным сетям и один из председателей группы ISO. Был одной из ключевых фигур, продвигающей идею эталонной модели OSI.

Следующая и важнейшая компания в этой истории – это Международная организация по стандартизации (ISO). Независимая неправительственная организация, которая занимается разработкой международных стандартов. Здесь также стоит упомянуть американское объединение ANSI, поддерживающее деятельность ISO.

История разработки модели OSI

История разработки OSI началась с небольшой группы ученых, во главе которой стояли Майк Канепа и Чарльз Бакман. В начале и середине 1970-х годов основное внимание группы было сосредоточено на проектировании и разработке прототипов систем для компании Honeywell Information System. А в середине 1970-х группа поняла, что для поддержки машин с базами данных распределенного доступа и их взаимодействия необходима более структурированная коммуникационная архитектура.

 Honeywell Information System

Honeywell Information System

Ученые стали изучать некоторые из существующих тогда решений, в том числе и многоуровневую сетевую архитектуру IBM (SNA). Уже тогда они поняли, что будут конкурировать с ней, так как модель оказалась схожа с той, что разрабатывали в Honeywell. SNA (Systems Network Architecture) была создана IBM для определения общих соглашений связи и передачи данных между аппаратными и программными продуктами IBM. Она представляла собой иерархический подход к системам и имела архитектуру терминал-компьютер. В одном из своих интервью Чарльз Бакман отмечает, что у SNA были фундаментальные проблемы, связанные с ее иерархической системой, поэтому группа работала над собственной моделью.

SNA and OSI: Three Strategies for Interconnection. Matthew A. Tillman and David (Chi-Chung) Yen

SNA and OSI: Three Strategies for Interconnection. Matthew A. Tillman and David (Chi-Chung) Yen

Возвращаемся к истории. Результатом исследований и работы над проектированием собственного решения стала разработка в 1977 году многоуровневой архитектуры, известной как архитектура распределенных систем HDSA (Honeywell Distributed System Architecture). Этот проект создавался, чтобы предоставить виды протоколов «процессор-процессор» и «процессор-терминал», необходимые для взаимодействия произвольного количества машин и произвольного количества людей. Это должно было стать основой для создания системных приложений (Чарльз Бакман, интервью Джеймса Л.Пелки).

Создание комитета OSI

В 1977 году Британский институт стандартов предложил Международной организации по стандартизации (ISO) создать стандарты для открытого взаимодействия между устройствами. Новые стандарты должны были предложить альтернативу закрытым системам традиционных компьютеров, разработанных без возможности взаимодействия друг с другом.

В результате ISO сформировала комитет по взаимосвязи открытых систем (OSI). А американскому национальному институту стандартов (ANSI), входящему в ISO, было поручено разработать предложения для первого заседания комитета. Бакман принял участие во встречах ANSI и представил многоуровневую модель. Она была выбрана как единственное предложение, которое представили комитету ISO SC-16.

Вашингтон, округ Колумбия, март 1978 года

С 28 февраля по 2 марта 1978 года в Вашингтоне проходило собрание ISO, где команда Honeywell презентовала свое решение ISO. На встрече собралось множество делегатов из десяти стран и наблюдатели из 4 международных организаций. На этом совещании было достигнуто соглашение, что многоуровневая архитектура HDSA удовлетворяет большинству требований и что ее можно будет расширить позже.

Для дальнейшей работы над усовершенствованием модели было решено собрать рабочие группы. Их главной целью было составление общего международного архитектурного положения.

Юбер Циммерман. Источник: Джеймс Пелки, "The History of Computer Communication"Юбер Циммерман. Источник: Джеймс Пелки, «The History of Computer Communication»

Модель, которую представили на собрании, состояла из шести слоев, куда изначально не входил нижний, физический уровень. И здесь вступает в игру Юбер Циммерманн, председатель OSI и глава архитектурной группы, который и предложил включить в модель физический уровень. Необходимо было узнать, как подавать импульсы на провода. Чарльз Бакман отмечает, что Юбер был одним из самых важных людей в этом комитете, с точки зрения его вклада в работу.

Принятие модели как стандарта

Ученые проводили собрания каждые шесть месяцев и укладывались в очень жесткие графики. В интервью Бакман вспоминает, что все ночи, в которые проходили встречи и велись работы, были долгими и поздними, группы стремились достичь главной цели и создать международное предложение по стандартизации.

Следующая встреча была в Париже. Перед ней группа ученых в 2 или 3 часа ночи обновляла и копировала текст документа (вспоминаются студенты перед сессией). Забавный факт: 6 или 7 человек группы Бакмана поместились, а точнее навалились друг на друга, в маленькую французскую машину Юбера Citroën 2CV (Deux Chevaux), чтобы успеть на собрание. Цель, которая двигала Бакмана и его коллег вперед – это возможность использовать модель на практике, познакомить всех с понятием многоуровневой архитектуры.

Бакман отмечает, что каждая встреча была важна, на всех из них добивались прогресса. Однако на каждом собрании всегда присутствовали новые люди, поэтому часть времени тратилась на то, чтобы вовлечь их в процесс.

Начиная с 1977 года, ISO провела программу по разработке общих стандартов и методов создания сетей, но аналогичный процесс появился в некоммерческой организации по стандартизации информационных и коммуникационных систем (ECMA) и Международном консультативном комитете по телеграфу и телефону (CCITT). Делегаты от этих групп присутствовали на собраниях ISO, и все они работали над одной целью. Позже CCITT приняла документы, которые почти идентичны документам ISO, и группа стала сотрудничать с ISO.

В 1983 году документы CCITT и ISO были объединены, чтобы сформировать Базовую эталонную модель взаимодействия открытых систем или просто модель OSI. Общий документ был опубликован в 1984 году как стандарт ISO 7498.

Теперь немного подробнее о самой модели OSI и ее принципах.

Сетевая модель OSI – «это баааза»

Как вы поняли из истории, это набор правил, который описывает процесс взаимодействия устройств по сети. OSI выступает первой стандартной моделью в области сетевых коммуникаций.

Модель OSI

Модель OSI

По модели процесс передачи данных по сети происходит постепенно от одного уровня к другому. На каждом из них используются информация с прошлого уровня и определенные протоколы. Главными героями здесь выступают устройства отправителя и получателя, а также сами передаваемые данные. И как раз процесс обмена информации между устройствами определяет модель OSI.

На физическом уровне информация предстает в виде битов, а на прикладном она отражается в более привычном для нас виде, в виде данных. Существует два процесса перехода от первого уровня к седьмому и наоборот. Первый – это инкапсуляция, когда данные отправляются с устройства и переводятся в биты. Второй – декапсуляция, обратный переход, когда биты трансформируются в данные.

Разбираемся, что конкретно делают уровни, и что же там происходит. Смотрим на модель снизу вверх.

Уровень 1: Физический

Начнем (кто бы удивился) с уровня 1. Здесь происходит обмен оптическими, электрическими или радиосигналами между устройствами отправителя и получателя.

На этом уровне железо не распознает данные в классическом для нас виде (картинки, текст, видео), но оно понимает биты (единицы и нули) и работает только с сигналами. Таким оборудованием выступают концентраторы, медиаконвертеры или репитеры. Здесь информация или биты передаются либо по проводам, кабелям, либо без них, например через Bluetooth, Wi-Fi.

Когда возникает проблема с сетью, многие специалисты сразу же обращаются к физическому уровню, чтобы проверить, например, не отключен ли сетевой кабель от устройства.

Уровень 2: Канальный

Мы прошли первый уровень. Что же дальше? Если в локальной сети находится более двух устройств, то необходимо определить, куда конкретно направлять информацию. Этим занимается как раз канальный уровень, принимающий на себя важную роль адресации.

Второй уровень принимает биты и трансформирует их в кадры (фреймы). Здесь существуют MAC-адреса (Media Access Control), которые необходимы для идентификации устройств. На втором уровне происходит еще проверка на ошибки, и исправление информации, а также управление ее передачей. Этим занимается LLC (Logical Link Control).

На канальном уровне работают уже более умные железки – коммутаторы. Их задачей является передача кадров от одного устройства другому, используя MAC-адреса.

Уровень 3: Сетевой

На третьем уровне происходит маршрутизация трафика. Этим занимаются такие устройства, как роутеры или маршрутизаторы.

На сетевом уровне работает протокол ARP (Address Resolution Protocol), который определяет соответствие между логическим адресом сетевого уровня (IP) и физическим адресом устройства (MAC). Здесь пересылаемая информация выступает уже в виде пакетов, состоящих из заголовка и поля данных.

Информация об известных IP и MAC-адресах хранится в виде таблицы (ARP-таблица) с данными, что позволяет устройствам не тратить время на повторную идентификацию.

Уровень 4: Транспортный

Четвертый уровень получает пакеты и передает их по сети. Он отвечает за установку соединения, надежность и управление потоком. Блоки данных делятся на отдельные фрагменты, размеры которых зависят от используемого протокола. Главными героями тут выступают 2 протокола TCP (Transmission Control Protocol) и UDP (User Datagram Protocol). В чем их отличие и когда их применять?

При транспортировке данных, наиболее восприимчивых к потерям, например, web-страницы, задействуется протокол TCP с установлением соединения. Он контролирует целостность информации, в данном случае нашей страницы, ибо потеря какого-то контента заставит задуматься пользователя о его полезности. Чтобы сделать передачу более эффективной и быстрой, транспортный уровень разбивает данные на более мелкие сегменты.

UDP-протокол используется с данными, для которых потери не так критичны, например, мультимедиа-трафик. Для них более заметна будет задержка, поэтому UDP обеспечивает связь без установки соединения. Во время передачи данных с помощью протокола UDP, пакеты делятся уже на автономные датаграммы. Они могут доставляться по разным маршрутам и в разной последовательности.

Уровень 5: Сеансовый

Уровни с пятого по седьмой уже работают с чистыми данными. И здесь за дело берутся не сетевые инженеры, а разработчики.

Сеансовый уровень, исходя из названия, отвечает за поддержание сеанса или сессии. Он координирует коммуникацию между приложениями и отвечает за установление, поддержание и завершение связи, синхронизацию задач и сам обмен информацией. Примером для пятого уровня можно назвать созвон в Zoom или прямой эфир на YouTube. Во время сессии необходимо обеспечивать синхронизированную передачу аудио и видео для всех участников, а также поддерживать саму связь. За это как раз отвечают протоколы сеансового уровня (RPC, H.245, RTCP).

Уровень 6: Уровень представления

Шестой уровень подготавливает информацию для последнего и преобразует (сжимает, кодирует, шифрует) их в понятный язык для пользователя или машины. Например, если вы отправляете картинку, то она сначала приходит в виде битов, а потом трансформируются в JPEG, GIF или другой формат.

Уровень 7: Прикладной

Верхний уровень модели OSI – это прикладной. С помощью своих протоколов он отображает данные в понятном конечному пользователю формате. Сюда входят такие технологии, как HTTP, DNS, FTP, SSH и многое другое. Почти каждый человек ежедневно взаимодействует с протоколами прикладного уровня.

Как это все работает?

Чтобы информация могла быть передана по сети от устройства к устройству, данные должны пройти семь кругов, а точнее уровней по модели OSI. Информация передается с уровня 7 вниз на уровень 1 от отправителя, а затем передается с уровня 1 на уровень 7 на устройстве получателя.

Примером передачи данных по модели OSI является приложение электронной почты. Когда пользователь отправляет письмо, оно приходит на уровень представления с использованием определенного протокола (SMTP для исходящей электронной почты). Уровень представления сжимает информацию и отправляет сообщение на сеансовый, который открывает сессию для связи между устройством отправителя и исходящим сервером.

Далее вступает в силу транспортный уровень, где сегментируются полученные данные. Затем сетевой уровень разбивает сегменты на пакеты и отправляет их на канальный уровень, где они разбиваются на фреймы. Фреймы переходят на физический уровень, где информация преобразуется в биты и передается через физическую среду, ​​беспроводные соединения или кабели.

Когда сообщение доходит до получателя, происходит обратный процесс, где информация переходит из битовых единиц и нулей в сообщение на почте получателя. Как-то так.

Что же дальше?

Если кратко разбирать, что произошло дальше, то в 1970-90-х существовало два конкурирующих стандарта: протокол TCP/IP и OSI. Несмотря на годы разработки, серьезные усилия со стороны лидеров отрасли, правительств и ученых, OSI была отвергнута на практике, и TCP/IP стал стандартом де-факто для всего интернет-трафика.

OSI была попыткой отрасли убедить участников согласовать общие сетевые стандарты. В течение периода в конце 1980-х и начале 1990-х инженеры, организации и страны поляризовались по вопросу о том, какой стандарт, модель OSI или TCP/IP сделает компьютерные сети надежными. Однако в то время как OSI разработала свои сетевые стандарты в конце 1980-х, TCP/IP стал широко использоваться для межсетевого взаимодействия. Строгую многоуровневую структуру OSI интернет-защитники считали неэффективной.

Модель OSI все еще используется в качестве эталона, однако протоколы, изначально задуманные для этой модели, не приобрели популярности. Некоторые инженеры утверждают, что эталонная модель по-прежнему актуальна для облачных вычислений. Другие говорят, что исходная модель OSI не соответствует сегодняшним сетевым протоколам, и предлагают вместо этого упрощенный подход.

В статье была описана история появления модели OSI и принцип ее работы. Она подходит для теоретического понимания сетевого стека, поскольку это базовая и обязательная технология для работы с сетями, но ее, на самом деле, не так просто использовать на практике. В настоящее время применяют модель TCP/IP, на которой работает Интернет. Она имеет аналогичную многоуровневую структуру, но не такую сложную, потому что объединяет некоторые уровни OSI.

Если нашли неточности или знаете дополнительные факты об истории OSI, буду рада видеть их в комментариях.

Материалы

Здесь собраны материалы, которые использовались в статье и которые можно почитать/посмотреть, чтобы еще больше углубится в историю:

Почитать об отличиях модели SNA и OSI можно в статье «SNA and OSI: Three Strategies for Interconnection» от Мэтью Тилмана (Matthew A. Tillman) и Дэвида Йена (David Chi-Chung Yen).

В интервью Джеймса Пелки Чарльз Бакман отвечает на вопросы о модели OSI, рассказывает о собраниях ISO и их участниках.

Веб-сайт, созданный на основе книги Джеймса Пелки «The History of Computer Communications». Тут собраны личные рассказы людей, участвовавших в развитии компьютерных коммуникаций.

В публикации на Habr представлен перевод статьи «OSI: Интернет, которого не было» Эндрю Л. Рассела. Если вы хотите узнать, как же TCP/IP превзошел OSI, то вам сюда.

В видеоинтервью Гарденера Хендри Чарльз Бакман рассказывает про «Проект интегрированных систем 2» General Electric, который был предназначен для создания общей «Производственной информации и системы управления» или MIACS. Этот проект, в свою очередь, создал интегрированное хранилище данных (IDS), первую систему управления базами данных. Здесь он также упоминает и про OSI.

UPD: Citroën 2CV (Deux Chevaux) — это французский автомобиль, а не британский.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *